Bilingual
Volume 40, Issue 3 (2025)                   GeoRes 2025, 40(3): 267-277 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML Persian Abstract PDF HTML Full-Text (HTML)


History

How to cite this article
Gravand F, Hasani Shah Shahidani E, Fallah Mojaver M, Hejazi S, Kafaei S. Dynamic Role of Vegetation 3D Structure and the Cumulative Effects of Human Threats on the Habitat Suitability of the Caspian Roe Deer. GeoRes 2025; 40 (3) :267-277
URL: http://georesearch.ir/article-1-1846-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Environment Guilan Province, Rasht, Iran
2- Cohort Center, Guilan University of Medical Sciences, Rasht, Iran
3- Department of Environment Kerman Province, Kerman, Iran
* Corresponding Author Address: Department of Environment Guilan Province, Resalat Street, Rasht, Iran. Postal Code: 4185713159 (gravand92@gmail.com)
Abstract   (260 Views)
Aims: The Caspian roe deer, as an indicator species in the Hyrcanian forests, is highly sensitive to habitat structural changes and human pressures. This study aimed to comprehensively assess habitat suitability and identify key factors affecting the distribution of this species in the Deylaman-Dorfak protected area (Farraroud, Rudbar).
Methodology: This was a descriptive study conducted in 2024 in Farraroud, Roudsar. An integrated approach combining the Habitat Evaluation Procedure (HEP), Ecological Niche Factor Analysis (ENFA), and Maximum Entropy Model (MaxEnt) was employed. Data were collected through expert questionnaires, field surveys, and Sentinel-2 satellite imagery, and validated using AUC and Boyce indices.
Findings: The habitat assessment results indicated that the Gousalekah habitat, with a suitability index of 0.86, exhibited the most favorable conditions, whereas Rokouh-Sara, with a value of 0.36, was in a critical state. The maximum entropy model demonstrated a highly satisfactory performance in predicting species distribution. Ecological niche factor analysis also revealed a marginality of 0.72 and a biological specialization of 1.9, indicating the species’ high sensitivity to habitat changes. The vegetation cover index was identified as the most influential variable, contributing 34%. Additionally, livestock density and distance from human settlements played the greatest roles in reducing habitat suitability.
Conclusion: Conservation of the Caspian roe deer requires simultaneous attention to both forest ecological structure and anthropogenic pressures.
Keywords:

References
1. Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, et al (2019). Standards for distribution models in biodiversity assessments. Science Advances. 5(1):eaat4858. [Link] [DOI:10.1126/sciadv.aat4858]
2. Benítez-López A, Alkemade R, Verweij PA (2010). The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biological Conservation. 143(6):1307-1316. [Link] [DOI:10.1016/j.biocon.2010.02.009]
3. Bobrowski M, Gillich B, Stolter C (2020). Nothing else matters? Food as a driving factor of habitat use by red and roe deer in winter?. Wildlife Biology. 2020(4):1-9. [Link] [DOI:10.2981/wlb.00723]
4. Brooks T, Pimm SL, Akçakaya HR, Buchanan G, Butchart SH, Foden W, et al (2019). Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends in Ecology & Evolution. 34(11):977-986. [Link] [DOI:10.1016/j.tree.2019.06.009]
5. Champagne E, Raymond P, Royo AA, Speed JD, Tremblay JP, Côté SD (2021). A review of ungulate impacts on the success of climate-adapted forest management strategies. Current Forestry Reports. 7(4):305-320. [Link] [DOI:10.1007/s40725-021-00148-5]
6. Côté SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004). Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics. 35(1):113-147. [Link] [DOI:10.1146/annurev.ecolsys.35.021103.105725]
7. Di Marco M, Ferrier S, Harwood TD, Hoskins AJ, Watson JE (2019). Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature. 573:582-585. [Link] [DOI:10.1038/s41586-019-1567-7]
8. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014). Defaunation in the anthropocene. Science. 345(6195):401-406. [Link] [DOI:10.1126/science.1251817]
9. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, et al (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment. 120:25-36. [Link] [DOI:10.1016/j.rse.2011.11.026]
10. Elith J, Leathwick JR (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics. 40(1):677-697. [Link] [DOI:10.1146/annurev.ecolsys.110308.120159]
11. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17(1):43-57. [Link] [DOI:10.1111/j.1472-4642.2010.00725.x]
12. Evcin O, Kucuk O, Akturk E (2019). Habitat suitability model with maximum entropy approach for European roe deer (Capreolus capreolus) in the Black Sea Region. Environmental Monitoring and Assessment. 191(11):669. [Link] [DOI:10.1007/s10661-019-7853-x]
13. Forkuor G, Hounkpatin OK, Welp G, Thiel M (2017). High resolution mapping of soil properties using remote sensing parameters in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS One. 12(1):e0170478. [Link] [DOI:10.1371/journal.pone.0170478]
14. Hirzel AH, Hausser J, Chessel D, Perrin N (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?. Ecology. 83(7):2027-2036. [Link] [DOI:10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2]
15. Iverson AR, Humple DL, Cormier RL, Hull J (2023). Land cover and NDVI are important predictors in habitat selection along migration for the Golden-crowned Sparrow, a temperate-zone migrating songbird. Movement Ecology. 11(1):2. [Link] [DOI:10.1186/s40462-022-00353-2]
16. Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, et al (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species' niches and distributions. Methods in Ecology and Evolution. 12(9):1602-1608. [Link] [DOI:10.1111/2041-210X.13628]
17. Mahmoodi S, Alizadeh Shabani A, Zeinalabedini M, Khalilipour O, Ashrafi S (2020). Identifying habitat patches and suitability for roe deer, Capreolus capreolus as a protected species in Iran. Caspian Journal of Environmental Sciences. 18(4):357-366. [Link]
18. Margules CR, Pressey RL (2000). Systematic conservation planning. Nature. 405:243-253. [Link] [DOI:10.1038/35012251]
19. Melis C, Jędrzejewska B, Apollonio M, Bartoń KA, Jędrzejewski W, Linnell JD, et al (2009). Predation has a greater impact in less productive environments: Variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecology and Biogeography. 18(6):724-734. [Link] [DOI:10.1111/j.1466-8238.2009.00480.x]
20. Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, et al (2015). Global effects of land use on local terrestrial biodiversity. Nature. 520:45-50. [Link] [DOI:10.1038/nature14324]
21. Nogueira OMA, Palmeirim AF, Peres CA, Dos Santos-Filho M (2021). Synergistic effects of habitat configuration and land-use intensity shape the structure of bird assemblages in human-modified landscapes across three major neotropical biomes. Biodiversity and Conservation. 30:3793-3811. [Link] [DOI:10.1007/s10531-021-02275-8]
22. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017). Opening the black box: An open-source release of Maxent. Ecography. 40(7):887-893. [Link] [DOI:10.1111/ecog.03049]
23. Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190(3-4):231-259. [Link] [DOI:10.1016/j.ecolmodel.2005.03.026]
24. Pourmosa H, Ghasempouri M, Mahini AS, Rezaei H (2024). Habitat suitability modeling of the Caspian Red Deer (Cervus elaphus Maral) in the central zone of the Hyrcanian region: Identification of priority conservation areas. Journal of Wildlife and Biodiversity. 8(4):148-172. [Link] [DOI:10.21203/rs.3.rs-7727446/v1]
25. Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, et al (2015). Collapse of the world's largest herbivores. Science Advances. 1(4):e1400103. [Link] [DOI:10.1126/sciadv.1400103]
26. Schwegmann S, Mörsdorf M, Bhardwaj M, Storch I (2023). Effects of understory characteristics on browsing patterns of roe deer in central European mountain forests. Ecology and Evolution. 13(8):e10431. [Link] [DOI:10.1002/ece3.10431]
27. Stritih A, Senf C, Kuemmerle T, Munteanu C, Dzadzamia L, Stritih J, et al (2024). Same, but different: Similar states of forest structure in temperate mountain regions of Europe despite different social-ecological forest disturbance regimes. Landscape Ecology. 39(6):114. [Link] [DOI:10.1007/s10980-024-01908-x]
28. Talebi KS, Sajedi T, Pourhashemi M (2014). Forests of Iran: A treasure from the past, a hope for the future. Dordrecht: Springer. [Link] [DOI:10.1007/978-94-007-7371-4]
29. USFWS (1980). Habitat Evaluation Procedures (HEP) [Internet]. Washington, D.C.: U.S. Fish and Wildlife Service [cited 2024 May 12th]. Available from: https://www.fws.gov/policy-library/870fw1. [Link]
30. Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2022). Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecological Monographs. 92(1):e01486. [Link] [DOI:10.1002/ecm.1486]