1. Al-Shargabi AA, Almhafdy A, Ibrahim DM, Alghieth M, Chiclana F (2022). Buildings' energy consumption prediction models based on buildings' characteristics: Research trends, taxonomy, and performance measures. Journal of Building Engineering. 54:104577. [
Link] [
DOI:10.1016/j.jobe.2022.104577]
2. Ali A, Jayaraman R, Azar E, Maalouf M (2024). A comparative analysis of machine learning and statistical methods for evaluating building performance: A systematic review and future benchmarking framework. Building and Environment. 252:111268. [
Link] [
DOI:10.1016/j.buildenv.2024.111268]
3. Asad Poor J, Goh Y W, Thorpe D (2021). A human-centric participatory approach to energy-efficient housing based on occupants' collaborative image. Open House International. 46(4):615-635. [
Link] [
DOI:10.1108/OHI-11-2020-0163]
4. Chen Y, Guo M, Chen Z, Chen Z, Ji Y (2022). Physical energy and data-driven models in building energy prediction: A review. Energy Reports. 8:2656-2671. [
Link] [
DOI:10.1016/j.egyr.2022.01.162]
5. Chong A, Augenbroe G, Yan D (2021). Occupancy data at different spatial resolutions: Building energy performance and model calibration. Applied Energy. 286:116492. [
Link] [
DOI:10.1016/j.apenergy.2021.116492]
6. Coakley D, Raftery P, Keane M (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews. 37:123-141. [
Link] [
DOI:10.1016/j.rser.2014.05.007]
7. Dino I. (2016). An evolutionary approach for 3D architectural space layout design exploration. Automation in construction. 69:131-150. [
Link] [
DOI:10.1016/j.autcon.2016.05.020]
8. Dino I G, Üçoluk G (2017). Multiobjective design optimization of building space layout, energy, and daylighting performance. Journal of Computing in Civil Engineering. 31(5):04017025. [
Link] [
DOI:10.1061/(ASCE)CP.1943-5487.0000669]
9. Ekici B, Cubukcuoglu C, Turrin M, Sariyildiz IS (2019). Performative computational architecture using swarm and evolutionary optimisation: A review. Building and Environment. 147:356-371. [
Link] [
DOI:10.1016/j.buildenv.2018.10.023]
10. Elbeltagi E, Wefki H (2021). Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Reports. 7:2534-2545. [
Link] [
DOI:10.1016/j.egyr.2021.04.053]
11. Feng Z, Zhang M, Wei N, Zhao J, Zhang T, He X (2022). An office building energy consumption forecasting model with dynamically combined residual error correction based on the optimal model. Energy Reports. 8:12442-12455. [
Link] [
DOI:10.1016/j.egyr.2022.09.022]
12. Gao H, Koch C, Wu Y (2019). Building information modelling based building energy modelling: A review. Applied energy. 238:320-343. [
Link] [
DOI:10.1016/j.apenergy.2019.01.032]
13. González-Torres M, Pérez-Lombard L, Coronel J F, Maestre I R, Yan D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports. 8:626-637. [
Link] [
DOI:10.1016/j.egyr.2021.11.280]
14. Jin X, Zhang C, Xiao F, Li A, Miller C (2023). A review and reflection on open datasets of city-level building energy use and their applications. Energy and Buildings. 285:112911. [
Link] [
DOI:10.1016/j.enbuild.2023.112911]
15. Kabir S, Islam RU, Hossain MS, Andersson K (2020). An integrated approach of belief rule base and deep learning to predict air pollution. Sensors. 20(7):1956. [
Link] [
DOI:10.3390/s20071956]
16. Liu H, Liang J, Liu Y, Wu H (2023). A review of data-driven building energy prediction. Buildings. 13(2):532. [
Link] [
DOI:10.3390/buildings13020532]
17. Liu K, Xu X, Zhang R, Kong L, Wang W, Deng W (2023). Impact of urban form on building energy consumption and solar energy potential: A case study of residential blocks in Jianhu, China. Energy and Buildings: 280:112727. [
Link] [
DOI:10.1016/j.enbuild.2022.112727]
18. Liu XH, Zhang DG, Yan HR, Cui YY, Chen L (2019). A new algorithm of the best path selection based on machine learning. IEEE Access. 7:126913-126928. [
Link] [
DOI:10.1109/ACCESS.2019.2939423]
19. Mousavi S, Villarreal-Marroquín MG, Hajiaghaei-Keshteli M, Smith NR (2023). Data-driven prediction and optimization toward net-zero and positive-energy buildings: A systematic review. Building and Environment. 242:110578. [
Link] [
DOI:10.1016/j.buildenv.2023.110578]
20. Musau F, Steemers K (2008). Space planning and energy efficiency in office buildings: the role of spatial and temporal diversity. Architectural Science Review. 51(2):133-145. [
Link] [
DOI:10.3763/asre.2008.5117]
21. Olu-Ajayi R, Alaka H, Sulaimon I, Balogun H, Wusu G, Yusuf W, et al (2023). Building energy performance prediction: A reliability analysis and evaluation of feature selection methods. Expert Systems with Applications. 225:120109. [
Link] [
DOI:10.1016/j.eswa.2023.120109]
22. Olu-Ajayi R, Alaka H, Sulaimon I, Sunmola F, Ajayi S (2022). Machine learning for energy performance prediction at the design stage of buildings. Energy for Sustainable Development. 66:12-25. [
Link] [
DOI:10.1016/j.esd.2021.11.002]
23. Pan Y, Zhu M, Lv Y, Yang Y, Liang Y, Yin R, et al (2023). Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies. Advances in Applied Energy. 10:100135. [
Link] [
DOI:10.1016/j.adapen.2023.100135]
24. Poirazis H (2008). Single and double skin glazed office buildings. Division of Energy and Building Design [Report]. Lund: Lund University. [
Link]
25. Sariyildiz S (2012). Performative computational design. Proceedings of the ICONARCH-International Congress of Architecture and Technology; 2012 Nov 15-17. Konya: Selcuk University. [
Link]
26. Souza C, Alsaadani S (2012). Thermal zoning in speculative office buildings: discussing the connections between space layout and inside temperature control. Proceedings of the 1st Building Simulation and Optimization Conference; 2012; Loughborough University, England. Loughborough: IBPSA Publication. [
Link]
27. Wei S, Jones R, De Wilde P (2014). Driving factors for occupant-controlled space heating in residential buildings. Energy and Buildings. 70:36-44. [
Link] [
DOI:10.1016/j.enbuild.2013.11.001]
28. Wei Y, Zhang X, Shi Y, Xia L, Pan S, Wu J, et al (2018). A review of data-driven approaches for prediction and classification of building energy consumption. Renewable and Sustainable Energy Reviews. 82(1):1027-1047. [
Link] [
DOI:10.1016/j.rser.2017.09.108]
29. Yi H (2016). User-driven automation for optimal thermal-zone layout during space programming phases. Architectural Science Review. 59(4):279-306. [
Link] [
DOI:10.1080/00038628.2015.1021747]
30. Zhang Y, Bai X, Mills FP, Pezzey JC (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings. 172:279-294. [
Link] [
DOI:10.1016/j.enbuild.2018.05.017]
31. Zhuang D, Zhang X, Lu Y, Wang C, Jin X, Zhou X, Shi X (2021). A performance data integrated BIM framework for building life-cycle energy efficiency and environmental optimization design. Automation in Construction. 127:103712. [
Link] [
DOI:10.1016/j.autcon.2021.103712]