Persian
دوره 38، شماره 3 - ( 1402 )                   جلد 38 شماره 3 صفحات 329-319 | برگشت به فهرست نسخه ها
نوع مقاله:
پژوهشی اصیل |
موضوع مقاله:

Print XML English Abstract PDF HTML


History

How to cite this article
Behrawan H, Yarahmadi J, Abbasi H. Identification and Monitoring of Sand and Dust Storms Sources (SDSS) in East Azarbaijan Province. GeoRes 2023; 38 (3) :319-329
URL: http://georesearch.ir/article-1-1507-fa.html
بهروان هوشنگ، یاراحمدی جمشید، عباسی حمیدرضا. شناسایی و پایش منابع گرد و غبار و ماسه‌های روان استان آذربایجان شرقی. فصل‌نامه تحقیقات جغرافیایی. 1402; 38 (3) :319-329

URL: http://georesearch.ir/article-1-1507-fa.html


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، تبریز، ایران
2- گروه تحقیقات تپه‌های شنی، موسسه تحقیقات جنگل‌ها و مراتع کشور، تهران، ایران
چکیده   (451 مشاهده)
اهداف: گرد و غبار یک معضل آب ‌و هوایی است که می‌تواند باعث خطرات جدی محیطی شده و موجب تاثیرات نامطلوب بر کشاورزی، صنعت، ترافیک و زندگی روزانه مردم شود. در این مطالعه منابع تولید گرد و غبار و ریزگرد در استان آذربایجان شرقی (حاشیه شرقی دریاچه ارومیه) شناسایی و بررسی شد.
روش‌شناسی: تحقیق پیش رو از نقطه‌نظر روش در دسته پژوهش‌های کمی و تجزیه‌ و تحلیل داده‌های با استفاده از آمارهای ۶ ساله (۱۴۰۱-۱۳۹۶)، شناسایی منابع تولید ریزگرد، اندازه‌گیری و پایش تولید گرد و غبار و رسوبات بادی با استفاده از شاخص RDD، همچنین اندازه‌گیری سرعت آستانه و شدت فرسایش بادی با استفاده از دستگاه تونل باد انجام شد.
یافتهها: سهم کاربری‌ها در کانون‌های ریزگرد استان به ترتیب ۸/۴۸% اراضی کشاورزی، ۱۹% اراضی تالاب خشک‌شده یا دریاچه، ۲/۳۲% مراتع تخریب‌یافته و غیره است. از نظر شکل‌شناسی، کانون‌های ریزگرد استان حدود ۵۳/۲% دشت دامنه‌ای و ۴۷/۹۷% دشت سیلابی و غیره هستند. کانون تولید ریزگرد حاشیه شرقی دریاچه ارومیه فعال‌ترین کانون در استان است که مشکلات زیادی برای ساکنین محلی و مناطق هم‌جوار ایجاد می‌نماید. این کانون ریزگردها عمدتاً شامل اراضی زراعی دیم، اراضی زراعی رها‌‌شده، اراضی تالاب خشک‌شده یا دریاچه و مراتع تخریب‌یافته است.
نتیجهگیری: در استان آذربایجان شرقی بعضی از اراضی نظیر اراضی زراعی شخم‌خورده، دیمزارهای رها‌شده، مراتع فقیر، بستر خشک ساحل دریاچه ارومیه ناشی از پس‌روی آب، بستر خشک رودخانه‌ها و آبراهه‌های فصلی و غیره در صورت همراهی عوامل نامساعد اقلیمی و فراهم‌بودن سایر شرایط محیطی به ‌صورت بالقوه می‌توانند به‌عنوان منابع تولید گرد و غبار ریزگرد عمل نمایند ولیکن اراضی فوق‌الذکر در استان آذربایجان شرقی به ‌صورت پراکنده مستقر بوده و در موارد و زمان‌های خاص قادر هستند در ایجاد ریزگرد در حجم قابل ‌ملاحظه عمل نمایند.

واژه‌های کلیدی:

فهرست منابع
1. Abtahi SM, Khosrowshahi M (2004). Desert domian in Esfahan province by climatological factors. Iranian Journal of Range and Desert Research. 12(3):249-262. [Persian]
2. Ahmady-Birgani H, Ravan P, Schlosser JS, Cuevas-Robles A, AzadiAghdam M, Sorooshian A (2020). On the chemical nature of wet deposition over a major desiccated lake: Case study for Lake Urmia basin. Atmospheric Research. 234:104762. [DOI:10.1016/j.atmosres.2019.104762]
3. Alizade Govarchin Ghale Y, Altunkaynak A, Unal A (2018). Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis. Water Resources Management. 32:325-337. [DOI:10.1007/s11269-017-1812-5]
4. An L, Che H, Xue M, Zhang T, Wang H, Wang Y, et al (2018). Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Science of the Total Environment. 633:452-462. [DOI:10.1016/j.scitotenv.2018.03.068]
5. Ardon-Dryer K, Mock C, Reyes J, Lahav G (2020). The effect of dust storm particles on single human lung cancer cells. Environmental Research. 181:108891. [DOI:10.1016/j.envres.2019.108891]
6. Ashkenazy Y, Yizhaq H, Tsoar H (2012). Sand dune mobility under climate change in the Kalahari and Australian deserts. Climatic Change. 112(3):901-923. [DOI:10.1007/s10584-011-0264-9]
7. Bali K, Mishra AK, Singh S, Chandra S, Lehahn Y (2019). Impact of dust storm on phytoplankton bloom over the Arabian Sea: A case study during March 2012. Environmental Science and Pollution Research. 26:11940-11950. [DOI:10.1007/s11356-019-04602-7]
8. Boroughani M, Hashemi H, Hosseini SH, Pourhashemi S, Berndtsson R (2019). Desiccating Lake Urmia: A new dust source of regional importance. IEEE Geoscience and Remote Sensing Letters, 17(9):1483-1487. [DOI:10.1109/LGRS.2019.2949132]
9. Dar MA, Ahmed R, Latif M, Azam M (2022). Climatology of dust storm frequency and its association with temperature and precipitation patterns over Pakistan. Natural Hazards. 110(1):655-677. [DOI:10.1007/s11069-021-04962-9]
10. Dehghanipour AH, Moshir Panahi D, Mousavi H, Kalantari Z, Tajrishy M (2020). Effects of water level decline in Lake Urmia, Iran, on local climate conditions. Water. 12(8):2153. [DOI:10.3390/w12082153]
11. Delju AH, Ceylan A, Piguet E, Rebetez M (2013). Observed climate variability and change in Urmia Lake Basin, Iran. Theoretical and Applied Climatology. 111:285-296. [DOI:10.1007/s00704-012-0651-9]
12. Ebrahimi Khusfi Z, Khosroshahi M, Roustaei F, Mirakbari M (2020). Spatial and seasonal variations of sand-dust events and their relation to atmospheric conditions and vegetation cover in semi-arid regions of central Iran. Geoderma. 365:114225. [DOI:10.1016/j.geoderma.2020.114225]
13. Ebrahimikhusfi Z, Khosroshahi M, Naeimi M, Zandifar S (2019). Evaluating and monitoring of moisture variations in Meyghan wetland using the remote sensing technique and the relation to the meteorological drought indices. Journal of RS and GIS for Natural Resources. 10(2):1-14. [Persian]
14. Enssafimoghadam T (2008). An Investigation and assessment of climatological indices and determination of suitable index for climatological droughts in the Salt Lake Basin of Iran. Iranian Journal of Range and Desert Research. 14(2):271-288. [Persian]
15. Ghahreman N, Bakhtiari B (2009). Solar radiation estimation from rainfall and temperature data in arid and semi-arid climates of Iran. Desert. 14(2):141-150.
16. Gholampour A, Nabizadeh R, Hassanvand MS, Taghipour H, Nazmara S, Mahvi AH (2015). Characterization of saline dust emission resulted from Urmia Lake drying. Journal of Environmental Health Science and Engineering. 13:1-11. [DOI:10.1186/s40201-015-0238-3]
17. Hanifepour M, Biabani L, Khosravi H, Akbarpoor Bonab B (2022). Monitoring and forecasting of climatic factors affecting the mobility of sand dunes using Lancaster index (Case study: Sirjan desert). Journal of Arid Regions Geographic Studies. 13(48):1-20. [Persian]
18. Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012). Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management. 26:129-145. [DOI:10.1007/s11269-011-9909-8]
19. Hossein Hamzeh N, Ranjbar Saadat Abadi A, Ooi MCG, Habibi M, Schöner W (2022). Analyses of a lake dust source in the Middle East through models performance. Remote Sensing. 14(9):2145 [DOI:10.3390/rs14092145]
20. Hosseini M, Khosrowshahi M, Attapour A, Karmi SA (2006). Introduction and determination of climatic and geological desert characteristics in Tehran province. Iranian Journal of Range and Desert Research. 13(2):102-108. [Persian]
21. Indoitu R, Kozhoridze G, Batyrbaeva M, Vitkovskaya I, Orlovsky N, Blumberg D, et al (2015). Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Research. 17:101-115. [DOI:10.1016/j.aeolia.2015.02.004]
22. Karami S, Hossein Hamzeh N, Kaskaoutis DG, Rashki A, Alam K, Ranjbar A (2021). Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Research. 50:100679 [DOI:10.1016/j.aeolia.2021.100679]
23. Khosroshahi M, Khashki MT, Ensafi Moghaddam T (2009). Determination of climatological deserts in Iran. Iranian Journal of Range and Desert Research. 16(1):96-113. [Persian]
24. Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016). Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics. 16(8):5063-5073. [DOI:10.5194/acp-16-5063-2016]
25. Kochkarova S, Mambetullaeva S (2020). Study of successional processes of Vegetation cover on the dried seabed of the Aral Sea. Journal Research on the Lepidoptera. 51:764-768. [DOI:10.36872/LEPI/V51I1/301071]
26. Kutuzov S, Legrand M, Preunkert S, Ginot P, Mikhalenko V, Shukurov K, et al (2019). The Elbrus (Caucasus, Russia) ice core record-Part 2: History of desert dust deposition. Atmospheric Chemistry and Physics. 19(22):14133-14148. [DOI:10.5194/acp-19-14133-2019]
27. Labban AH, Butt MJ (2021). Analysis of sand and dust storm events over Saudi Arabia in relation with meteorological parameters and ENSO. Arabian Journal of Geosciences. 14:1-12. [DOI:10.1007/s12517-020-06291-w]
28. Li J, Garshick E, Huang S, Koutrakis P (2021). Impacts of El Niño-Southern Oscillation on surface dust levels across the world during 1982-2019. Science of the Total Environment. 769:144566. [DOI:10.1016/j.scitotenv.2020.144566]
29. Liu D, Abuduwaili J, Lei J, Wu G (2011). Deposition rate and chemical composition of the aeolian dust from a bare saline playa, Ebinur Lake, Xinjiang, China. Water, Air, & Soil Pollution. 218:175-184. [DOI:10.1007/s11270-010-0633-4]
30. Mardi AH, Khaghani A, MacDonald AB, Nguyen P, Karimi N, Heidary P, et al (2018). The Lake Urmia environmental disaster in Iran: A look at aerosol pollution. Science of The Total Environment. 633:42-49. [DOI:10.1016/j.scitotenv.2018.03.148]
31. Middleton NJ (2017). Desert dust hazards: A global review. Aeolian Research. 24:53-63. [DOI:10.1016/j.aeolia.2016.12.001]
32. Miri A, Maleki S, Middleton N (2021). An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Science of the Total Environment. 757:143952. [DOI:10.1016/j.scitotenv.2020.143952]
33. Naemi M, Zandifar S, Khosroshahi M, Ashoori P, Abbasi H (2021). Investigating the effects of climate change on the mobility of sand dunes (case study: Sabzevar city). Desert Management. 9(2):1-18. [Persian]
34. Naji H, Taherpour M (2019). The effect of simulated dust storm on wood development and leaf stomata in Quercus brantii L. Desert. 24(1):43-49.
35. Nazari Samani A, Rahdari MR, Rahi G (2020). Assessment of spatial variabilities of soil erodibility by wind on margial lands of the Lake Urmia. Desert Management. 8(15):53-72. [Persian]
36. Opp C, Groll M, Abbasi H, Ahmadi Foroushani M (2021). Causes and effects of sand and dust storms: What has past research taught us? A survey. Journal of Risk and Financial Management. 14(7):326. [DOI:10.3390/jrfm14070326]
37. Opp C, Wagemann J, Banedjshafi S, Abbasi HR (2017). Aral Sea syndrome and Lake Urmia crisis. A comparison of causes, effects and strategies for problem solutions. Academic Research. 34:169-83.
38. Salehi S, Ardalan A, Ostadtaghizadeh A, Garmaroudi G, Zareiyan A, Rahimiforoushani A (2019). Conceptual definition and framework of climate change and dust storm adaptation: A qualitative study. Journal of Environmental Health Science and Engineering. 17:797-810. [DOI:10.1007/s40201-019-00396-5]
39. Schepanski K (2018). Transport of mineral dust and its impact on climate. Geosciences. 8(5):151. [DOI:10.3390/geosciences8050151]
40. Shirmohammadi B, Malekian A, Salajegheh A, Taheri B, Azarnivand H, Malek Z, et al (2020). Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy. 90:104299. [DOI:10.1016/j.landusepol.2019.104299]
41. Singer A, Zobeck T, Poberezsky L, Argaman E (2003). The PM10 and PM2·5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments. 54(4):705-728. [DOI:10.1006/jare.2002.1084]
42. Soudi M, Ahmadi H, Yasi M, Hamidi SA (2017). Sustainable restoration of the Urmia Lake: History, threats, opportunities and challenges. European Water. 60:341-347.
43. Valiallahi J, Soltani A, Ahmadi Eghbal M (2019). Evaluating climate change and anthropogenic effects on inducing Salt storms & aerosol hazards risk in Urmia Lake. Anthropogenic Pollution. 3(1):25-32. [Persian]
44. Yarahmadi D, Nasiri B, Khushkish A, Nikbakht H (2015). Climate change and dusty days in the west and southwest of Iran. Desert Ecosystem Engineering. 3(5):19-28. [Persian]
45. Yizhaq H, Ashkenazy Y, Tsoar H (2007). Why do active and stabilized dunes coexist under the same climatic conditions? Physical Review Letters. 98(18):98-101. [DOI:10.1103/PhysRevLett.98.188001]
46. Zandifar S, Khosroshahi M, Ebrahimikhusfi Z, Naeimi M (2021). Using Lancaster index to analyse of the sand dunes activity in arid lands and sensitivity analysis of the factors affecting it (case study: Buin-Zahra city). Desert Management. 8(16):1-16. [Persian]