[صفحه اصلی ]   [Archive] [ English ]  
:: آخرين شماره :: جستجو :: ارسال مقاله :: ثبت نام ::
:: دوره 35، شماره 4 - ( 1399 ) ::
جلد 35 شماره 4 صفحات 333-341 برگشت به فهرست نسخه ها
تحلیل اثر تغییرات محیطی پراکنده‌رویی شهری بر شدت توفانی‌شدن هوا (نمونه‌های موردی: تهران، مشهد، آنکارا و استانبول)
غزاله ربانی*
گروه جغرافیا و برنامه‎ریزی شهری، پژوهشکده جغرافیا، پژوهشگاه شاخص پژوه، اصفهان، ایران ، ghazaleh.rabbani@gmail.com
چکیده:   (896 مشاهده)
اهداف: درک اثر توسعه فیزیکی شهر بر ناپایداری هوای شهری، یک موضوع چالش‌برانگیز است. پژوهش حاضر با هدف تحلیل شاخص تغییرات محیطی پراکنده‌رویی شهری و ارتباط آن با شاخص شدت توفانی‌شدن هوا (SWEAT) در چهار منطقه شهری ایران و ترکیه در شرایط فعلی (2018) و احتمالات آینده (2030) انجام شد.
روش‌شناسی: در این پژوهش، داده‌های شاخص توفانی‌شدن هوا از داده‌های جو بالای ایستگاه‌های رادیوسوند تهران، مشهد، آنکارا و استانبول استخراج شد. همچنین داده‌های پراکنده‌رویی شهری از داده‌های شبکه جهانی سکونتگاه‌های انسانی فراهم شدند.
یافته‌ها: تحلیل پراکنده‌رویی شهری نشان داد که شهرهای آنکارا و استانبول به ترتیب بیشترین توسعه فیزیکی را به خود اختصاص داده‌اند. طبق یافته‌های مدل توسعه پراکنده شهری، شدیدترین نرخ توسعه پراکنده برای شهر تهران پیش‌بینی می‌شود. براساس محاسبه شاخص تغییرات محیطی ناشی از پراکنده‌رویی (ΔY) هم مشخص شد که در آینده مقادیر این شاخص برای چهار محدوده شهری مورد مطالعه بین 61/0 تا 98/1 خواهد بود که شدیدترین این تغییرات محیطی (98/1) برای شهر تهران قابل محاسبه است.
نتیجه‌گیری: محاسبه شاخص توفانی‌شدن هوا در سال 2018 نشان می‌دهد که توسعه و پراکنده‌رویی شهری و تغییرات محیطی ناشی از آن با نرخ همبستگی 913/0 اثر قابل توجهی در افزایش رخدادهای توفانی هوا در کل مناطق شهری داشته است. پیش‌بینی مقدار این شاخص برای سال 2030 نشان می‌دهد که متوسط شاخص توفانی‌شدن هوا در مناطق شهری مورد مطالعه بین 19% تا 118% افزایش خواهد داشت که بیشترین میزان برای شهر تهران قابل پیش‌بینی است.
واژه‌های کلیدی: پراکنده‌رویی شهری، تحلیل آماری، توسعه شهری، شاخص تغییرات محیطی، شاخص توفانی‌شدن هوا
متن کامل [PDF 905 kb]   (178 دریافت)    
نوع مقاله: پژوهشی اصیل | موضوع مقاله: برنامه‌ریزی شهری
دریافت: 1399/5/19 | پذیرش: 1399/6/12 | انتشار: 1399/6/18
فهرست منابع
1. Abshaev MT, Abshaev AM, Mikhailovskiy YP, Sinkevich AA, Popov VB, Adzhiev AK (2019). Characteristics of the supercell Cb thunderstorm and electrical discharges on 19 August 2015, North Caucasus: A case study. Preprints. [DOI:10.20944/preprints201912.0033.v1]
2. Alpert P, Kishcha P, Kaufman YJ, Schwarzbard R (2005). Global dimming or local dimming?: effect of urbanization on sunlight availability. Geophysical Research Letters. 32(17):802. [DOI:10.1029/2005GL023320]
3. Arsanjani J, Helbich M, Vaz ED (2013). Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case Tehran. Cities. 32:33-42. [DOI:10.1016/j.cities.2013.01.005]
4. Baharvand S, Daneshvar MRM (2019). Impact assessment of treating wastewater on the physiochemical variables of environment: A case of Kermanshah wastewater treatment plant in Iran. Environmental Systems Research. 8:18. [DOI:10.1186/s40068-019-0146-0]
5. Baltaci H, Akkoyunlu BO, Tayanc M (2018). An extreme hailstorm on 27 July 2017 in Istanbul, Turkey: Synoptic scale circulation and thermodynamic evaluation. Pure and Applied Geophysics. 175:3727-3740. [DOI:10.1007/s00024-018-1841-x]
6. Bauman WH, Wheeler MM, Short DA (2005). Severe weather forecast decision aid. NASA Technical Reports Server. Washington, D.C: NASA Publictions.
7. Bazrkar MH, Zamani N, Eslamian S, Eslamian A, Dehghan D (2015). Urbanization and climate change. In: Filho WL, editors. Handbook of Climate Change Adaptation. Berlin: Springer; pp. 619-655. [DOI:10.1007/978-3-642-38670-1_90]
8. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018). Present and future 374 Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data. 5:(1). [DOI:10.1038/sdata.2018.214] [PMID] [PMCID]
9. Bhat PA, Shafiq M, Mir AA, Ahmed P (2017). Urban sprawl and its impact on landuse/land cover dynamicsof Dehradun City, India. International Journal of Sustainable Built Environment. 6(2):513-521. [DOI:10.1016/j.ijsbe.2017.10.003]
10. Bhatta B (2009). Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. International Journal of Remote Sensing. 30(18):4733-4746. [DOI:10.1080/01431160802651967]
11. Burdon FJ, Reyes M, Alder AC, Joss A, Ort C, Räsänen K, et al (2016). Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams. Ecology and Evolution. 6(12):3923-3939. [DOI:10.1002/ece3.2165] [PMID] [PMCID]
12. Das S (2017). Severe thunderstorm observation and modeling-a review. Vayu Mandal. 43(2):1-29.
13. Daneshvar MRM, Abadi NH (2017). Spatial and temporal variation of nitrogen dioxide measurement in the Middle East within 2005-2014. Modeling Earth Systems and Environment. 3(1). [DOI:10.1007/s40808-017-0293-0]
14. Daneshvar MRM, Rabbani G, Shirvani S (2019). Assessment of urban sprawl effects on regional climate change using a hybrid model of factor analysis and analytical network process in the Mashhad city, Iran. Environmental Systems Research. 8:23. [DOI:10.1186/s40068-019-0152-2]
15. Derubertis D (2006). Recent trends in four common stability indices derived from U.S. radiosonde observations. Journal of Climate. 19(3):309-323. [DOI:10.1175/JCLI3626.1]
16. Dewan AM, Yamaguchi Y (2009). Land use and land cover change in greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography. 29(3):390-401. [DOI:10.1016/j.apgeog.2008.12.005]
17. Dodman D (2009). Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environment and Urbanization. 21(1):185-201. [DOI:10.1177/0956247809103016]
18. Dulal HB, Brodnig G, Onoriose CG (2011). Climate change mitigation in thetransport sector through urban planning: A review. Habitat International. 35(3):494-500. [DOI:10.1016/j.habitatint.2011.02.001]
19. Emadodin I, Taravat AR, Rajaei M (2016). Effects of urban sprawl on local climate: A case study, north central Iran. Urban Climate. 17:230-247. [DOI:10.1016/j.uclim.2016.08.008]
20. Epstein J, Payne K, Kramer E (2002). Techniques for mapping suburban sprawl. Photogrammetric Engineering and Remote Sensing. 63(9):913-918.
21. Fan H, Sailor DJ (2005). Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmospheric Environment. 39(1):73-84. [DOI:10.1016/j.atmosenv.2004.09.031]
22. GDEM (2018). Global digital elevation model archived by national aeronautics and space administration. United States: NASA.
23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25(15):1965-1978. [DOI:10.1002/joc.1276]
24. Jat MK, Garg PK, Khare D (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation. 10(1):26-43. [DOI:10.1016/j.jag.2007.04.002]
25. Kardani-Yazd N, Kardani-Yazd N, Daneshvar MRM (2019). Strategic spatial analysis of urban greenbelt plans in Mashhad city, Iran. Environmental Systems Research. 8:30. [DOI:10.1186/s40068-019-0158-9]
26. Kaltenböck R, Diendorfer G, Dotzek N (2009). Evaluation of thunderstorm indices from ECMWF analyses, lightning data and severe storm reports. Atmospheric Research. 93(1): 381-396. [DOI:10.1016/j.atmosres.2008.11.005]
27. Liu Y, Chen J, Cheng W, Sun C, Zhao S, Pu Y(2014). Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: A case study on Southern Jiangsu,China (1983-2007). Frontiers of Earth Science. 8:490-504.
28. Makar PA, Gravel S, Chirkov V, Strawbridge KB, Froude F, Arnold J, Brook J (2006). Heat flux, urban properties, and regional weather. Atmospheric Environment. 40(15): 2750-2766. [DOI:10.1016/j.atmosenv.2005.11.061]
29. Miller PW, Mote TL (2018). Characterizing severe weather potential in synoptically weakly forced thunderstorm environments. Natural Hazards and Earth System Science. 18(4):1261-1277. [DOI:10.5194/nhess-18-1261-2018]
30. Mundia CN, Aniya M (2006). Dynamics of landuse/cover changes and degradation of Nairobi City Kenya. Land Degradation and Development. 17(1):97-108. [DOI:10.1002/ldr.702]
31. Pham HM, Yamaguchi Y, Bui TQ (2011). A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape and Urban Planning. 100(3): 223-230. [DOI:10.1016/j.landurbplan.2010.12.009]
32. Rabbani G, Kardani-Yazd N, Daneshvar MRM (2020). Factors affecting severe weather threat index in urban areas of Turkey and Iran. Environmental Systems Research. 9:9. [DOI:10.1186/s40068-020-00173-6]
33. Rabbani G, Shafaqi S, Rahnama MR (2017). Urban sprawl modeling using statistical approach in Mashhad, northeastern Iran. Modeling Earth Systems and Environment. 4:141-149. [DOI:10.1007/s40808-017-0404-y]
34. Rafiee R, Mahiny AS, Khorasani N, Darvishsefat AA, Danekar A (2009). Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities. 26(1):19-26. [DOI:10.1016/j.cities.2008.11.005]
35. Rhodes CL, Senkbeil JC (2014). Factors contributing to tornadogenesis in landfalling Gulf of Mexico tropical cyclones. Meteorological Applications. 21:940-947. [DOI:10.1002/met.1437]
36. Siedlecki M (2009). Selected instability indices in Europe. Theoretical and Applied Climatology. 96:85-94. [DOI:10.1007/s00704-008-0034-4]
37. Sioutas MV, Flocas HA (2003). Hailstorms in Northern Greece: Synoptic patterns and thermodynamic environment. Theoretical and Applied Climatology. 75:189-202. [DOI:10.1007/s00704-003-0734-8]
38. Sudhira HS, Ramachandra TV, Jagdish KS (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation. 5(1) :29-39. [DOI:10.1016/j.jag.2003.08.002]
39. Tewolde MG, Cabral P (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing. 3(10): 2148-2165. [DOI:10.3390/rs3102148]
40. Tyrrell J (2007). Winter tornadoes in Ireland: The case of the Athlone tornado of 12 January 2004. Atmospheric Research. 83(2-4):242-253. [DOI:10.1016/j.atmosres.2005.09.017]
41. Wang J, Sheng Z, Zhou B, Zhou S (2014). Lightning potential forecast over Nanjing with denoised sounding-derived indices based on SSA and CS-B Pneural network. Atmospheric Research. 137:245-256. [DOI:10.1016/j.atmosres.2013.10.014]
42. World Urbanization Prospects [Internet]. Population division of the department of economic and social affairs of the United Nations. [Cited 2019, 01 Jun Published 2019, 30 May]. Madrid: UN Publications.
43. Wyoming Weather Web [Internet]. Weather Information for Wyoming. [Cited 2019, 01 Jun Published 2018, 25 February]. United States: University of Wyoming Publications.
44. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal landsat remote sensing. Remote Sensing of Environment. 98(2-3):317-328. [DOI:10.1016/j.rse.2005.08.006]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rabbani G. Impact Analysis of the Environmental Changes Index of Urban Sprawl on the Severe Weather Storm;Case Studies of Tehran, Mashhad, Ankara, and Istanbul. GeoRes. 2020; 35 (4) :333-341
URL: http://georesearch.ir/article-1-957-fa.html

ربانی غزاله. تحلیل اثر تغییرات محیطی پراکنده‌رویی شهری بر شدت توفانی‌شدن هوا (نمونه‌های موردی: تهران، مشهد، آنکارا و استانبول). فصل‌نامه تحقیقات جغرافیایی. 1399; 35 (4) :333-341

URL: http://georesearch.ir/article-1-957-fa.html



دوره 35، شماره 4 - ( 1399 ) برگشت به فهرست نسخه ها
فصلنامه تحقیقات جغرافیایی Geographical Researches Quarterly Journal
Persian site map - English site map - Created in 0.04 seconds with 31 queries by YEKTAWEB 4299