زمان پاسخگویی تنها روزهای زوج ساعت 8 الی 10 صبح 

   [Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 33, Issue 2 (9-2018) ::
geores 2018, 33(2): 90-107 Back to browse issues page
Investigation of Urban Sprawl Using Spatial Planning Models in Mashhad
Rabbani Ghazaleh 1, Sirous Shafaghi 1, Mohamad Rahim Rahnama 2
1- Department of Geography and Urban Planning, Research Institute of Shakhes Pajouh, Isfahan, Iran
2- Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:   (144 Views)
Introduction and Background:Urban sprawl is a key subject of interest among urban planners and policy–makers, which needs to measure and monitor in order to overcome its impacts. In fact, urban expansion, and sprawl modeling is an interdisciplinary field as it involves numerous scientific areas such as geographical information system (GIS), complexity theory, urban geography, and remote sensing.
Aims: The present study aims to generate an urban sprawl model using spatial planning approaches in Mashhad city. This type of measurement of physical growth in urban districts of Mashhad city is essential to urban planners and decision–makers who immediately need updated database for planning and management purposes.
Methodology: For this purpose, modified relative Shannon’s entropy together with hierarchical clustering analysis was considered. Five geo–statistical variables were considered as independent input variables to measure sprawl model. Thus, to reveal probability relations between sprawl indices and aforementioned independent variables the correlation coefficients were used.
Conclusion: The results revealed an analogous output for both relative entropy measurement and hierarchical clustering analysis through the sprawl model. On this basis, three municipality districts were categorized as prone zones of the study area in regard of sprawl expansion pattern. A direct and significant correlation between sprawl indices and informal settlements was estimated equal to 0.44 through municipality districts. Also, direct correlations (R=0.32 to 0.30) were observed between sprawl index and frequency of crimes and building parcel size. Contrarily, the result revealed a reverse correlation (R=−0.50) between sprawl index and land price index was explored based on each districts. It seems that the sprawl expansion in these districts influenced the growth of informal settlements and increase of crimes. This phenomenon could trigger negative environmental and socio–economical impacts in the study area. Hence, the urban management in Mashhad city should control the sprawl expansion in the prone districts by environmental prevention of land use change and land degradation.
Keywords: Urban Sprawl Model, Shannon’s Entropy, Hierarchical Clustering Analysis, Geo–Statistical Indices
Full-Text [PDF 1520 kb]   (49 Downloads)    
Type of Study: Research | Subject: Urban Planning
Received: 2017/12/27 | Accepted: 2018/09/16 | Published: 2018/09/17
References
1. Alsharif, A. A. A., & Pradhan, B. (2014). Urban sprawl analysis of Tripoli metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing, 42(1), 149-163. [DOI:10.1007/s12524-013-0299-7]
2. Barnes, K. B., Morgan, J. M., Roberge, M. C., & Lowe, S. (2001). Sprawl development: Its patterns, consequences, and measurement. Towson University, Towson, 1-24.
3. Bhatta, B. (2009). Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. International Journal of Remote Sensing, 30(18), 4733-4746. [DOI:10.1080/01431160802651967]
4. Burton, E. (2000). The compact city: Just or just compact? A preliminary analysis. Urban Studies, 37(11), 1969-2006. [DOI:10.1080/00420980050162184]
5. Chatterjee, N. D., Chatterjee, S., & Khan, A. (2016). Spatial modeling of urban sprawl around Greater Bhubaneswar city, India. Modeling Earth Systems and Environment, 2(1), 14. [DOI:10.1007/s40808-015-0065-7]
6. Effat, H. A., & El Shobaky, M. A. (2015). Modeling and mapping of urban sprawl pattern in Cairo using multi-temporal landsat images, and Shannon's entropy. Advances in Remote Sensing, 4(04), 303-318. [DOI:10.4236/ars.2015.44025]
7. Epstein, J., Payne, K., & Kramer, E. (2002). Techniques for mapping suburban sprawl. Photogrammetric engineering and remote sensing, 68(9), 913-918.
8. Ewing, R. (1994). Characteristics, causes, and effects of sprawl: A literature review. Environment Urban, 21(2), 1-15.
9. Ewing, R. (1997). Is Los Angeles-style sprawl desirable? Journal of the American planning association, 63(1), 107-126. [DOI:10.1080/01944369708975728]
10. Fang, J., Shenghe, L., Hong, Y., & Qing, Z. (2007). Measuring urban sprawl in Beijing with geo-spatial indices. Journal of Geographical Sciences, 17(4), 469-478. [DOI:10.1007/s11442-007-0469-z]
11. Farnahad Consultant Engineers. (2009). Building and development comprehensive plan of Mashhad metropolitan: Ministry of Roads and Urban Development. Khorasan Razavi province of Iran. (Persian)
12. Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling sprawl to the ground: defining and measuring an elusive concept. Housing policy debate, 12(4), 681-717. [DOI:10.1080/10511482.2001.9521426]
13. Gillham, O. (2002). The limitless city: A primer on the urban sprawl debate. Washington, D.C: Island Press.
14. Helbich, M., & Leitner, M. (2010). Postsuburban spatial evolution of Vienna's urban fringe: evidence from point process modeling. Urban Geography, 31(8), 1100-1117. Jat, M. K., Garg, P. K., & Khare, D. (2006). Assessment of urban growth pattern using spatial analysis techniques. Paper presented at the Indo-Australian Conference on Information Technology in Civil Engineering (IAC-ITCE). [DOI:10.2747/0272-3638.31.8.1100]
15. Ji, W., Ma, J., Twibell, R. W., & Underhill, K. (2006). Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Computers, Environment and Urban Systems, 30(6), 861-879. [DOI:10.1016/j.compenvurbsys.2005.09.002]
16. Joshi, H., Guhathakurta, S., Konjevod, G., Crittenden, J., & Li, K. (2006). Simulating the effect of light rail on urban growth in phoenix: An application of the UrbanSim modeling environment. Journal of Urban Technology, 13(2), 91-111. [DOI:10.1080/10630730600872096]
17. Malik, A., & Abdalla, R. (2017). Agent-based modelling for urban sprawl in the region of Waterloo, Ontario, Canada. Modeling Earth Systems and Environment, 3(1), 7. [DOI:10.1007/s40808-017-0271-6]
18. Mansouri Daneshvar, M. R. (2015). Climatic impacts on hydrogeochemical characteristics of mineralized springs: a case study of the Garab travertine zone in the northeast of Iran. Arabian Journal of Geosciences, 8(7), 4895-4906. [DOI:10.1007/s12517-014-1536-2]
19. Meteorological Center of Khorasan Razavi. (2017). Database of Mashhad Synoptic Station. (1976-2015). from www.razavimet.ir. (Persian)
20. Mohammady, S., & Delavar, M. R. (2016). Urban sprawl assessment and modeling using landsat images and GIS. Modeling Earth Systems and Environment, 2(3), 155. [DOI:10.1007/s40808-016-0209-4]
21. Pham, H. M., Yamaguchi, Y., & Bui, T. Q. (2011). A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape and Urban Planning, 100(3), 223-230. [DOI:10.1016/j.landurbplan.2010.12.009]
22. Poelmans, L., & Van Rompaey, A. (2009). Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landscape and Urban Planning, 93(1), 10-19. [DOI:10.1016/j.landurbplan.2009.05.018]
23. Polidoro, M., de Lollo, J. A., & Barros, M. V. F. (2011). Environmental impacts of urban sprawl in Londrina, Paraná, Brazil. Journal of Urban and Environmental Engineering, 5(2), 73-83. [DOI:10.4090/juee.2011.v5n2.073083]
24. Rabbani, G., Shafaqi, S., & Rahnama, M. R. (2018). Urban sprawl modeling using statistical approach in Mashhad, northeastern Iran. Modeling Earth Systems and Environment, 4(1), 141-149. [DOI:10.1007/s40808-017-0404-y]
25. Rafiee, R., Mahiny, A. S., Khorasani, N., Darvishsefat, A. A., & Danekar, A. (2009). Simulating urban growth in Mashad city, Iran through the SLEUTH model (UGM). Cities, 26(1), 19-26. [DOI:10.1016/j.cities.2008.11.005]
26. Rahnama, M. R., & Abbaszadeh, G. R. (2008). A comparative study measuring dispersal and compactness in Sydney and Mashhad metropolitans. Geography and Regional Development, 3(6), 101-128. (Persian)
27. Rahnama, M. R., & Javan, J. (2011). Studies on urban landuse planning of Mashhad metropolitan: Jahad Daneshgahi Publication. (Persian)
28. Rui, Y. (2013). Urban growth modeling based on land-use changes and road network expansion. (Doctoral Thesis), KTH Royal Institute of Technology, Stockholm, Sweden.
29. Schneider, A., & Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Studies, 45(3), 659-692. [DOI:10.1177/0042098007087340]
30. Shahraki, S., Kazemzadeh, A., & Badami, S. (2014). Spatiotemporal analysis of the physical expansion of Mashhad City and monitoring of land use changes around. Geographical Urban Planning Research, 2(4), 483-499. (Persian)
31. Singh, B. (2014). Urban growth using shannon entropy, a case study of Rohtak city. International Journal of Advanced Remote Sensing and GIS, 3(1), 544-552.
32. Statistical Centre of Iran. (2011). Macro results of statistical survey. from http://www.amar.org.ir. (Persian)
33. Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3(10), 2148-2165. [DOI:10.3390/rs3102148]
34. Thomas, R. W. (1981). Information statistics in geography: Geo Abstr, Norwich.
35. Yu, X. J., & Ng, C. N. (2007). Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landscape and urban planning, 79(1), 96-109. [DOI:10.1016/j.landurbplan.2006.03.008]
36. Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin cities (Minnesota) metropolitan area by multitemporal landsat remote sensing. Remote sensing of Environment, 98(2-3), 317-328. [DOI:10.1016/j.rse.2005.08.006]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA code



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghazaleh R, Shafaghi S, Rahnama M R. Investigation of Urban Sprawl Using Spatial Planning Models in Mashhad. geores. 2018; 33 (2) :90-107
URL: http://georesearch.ir/article-1-294-en.html


Volume 33, Issue 2 (9-2018) Back to browse issues page
فصلنامه تحقیقات جغرافیایی Geographical Researches Quarterly Journal
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3764