Persian
Volume 38, Issue 3 (2023)                   GeoRes 2023, 38(3): 373-380 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML Persian Abstract PDF HTML


History

How to cite this article
Galoie M, Motamedi A. Evaluation of the Vertical Piers Impact on Debris Flow Hazard Mitigation Using a Numerical Model. GeoRes 2023; 38 (3) :373-380
URL: http://georesearch.ir/article-1-1511-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
Authors M. Galoie1 , A. Motamedi * 2
1- Civil Engineering Department, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
2- Civil Engineering Department, Buein Zahra Technical University, Qazvin, Iran
* Corresponding Author Address: Civil Engineering Department, Buein Zahra Technical University, Imam Khomeini Boulevard, Buein Zahra, Qazvin, Iran. Postal Code: 3451745346 (artemis.mot@bzte.ac.ir)
Abstract   (424 Views)
Aims: Debris Flow is a natural hazard phenomenon that frequently manifests suddenly, inflicting substantial economic and human losses. To date, numerous methodologies have been proposed to manage debris flow; however, the intricate nature of the governing equations renders the analysis of debris flow an exceedingly arduous and nearly unattainable task. The principal objective of this investigation was to assess the efficacy of vertical piers in mitigating debris flow.
Methodology: This particular study, characterized as an empirical-computational endeavor, transpired between the months of April and August in 2023. Its focus was centered on the Solqan region, situated in the northwestern vicinity of Tehran, an area notably susceptible to debris flow. Within this study, the influence of truncated concrete piers on the reduction of flow velocity and blockage was explored and replicated through employment of the RAMMS numerical model. To accomplish this, a variety of pier arrangements were considered at different junctures along the pathway of flow, with subsequent assessment of the modeling outcomes.
Findings: Among all the simulated scenarios, the scenario in which the piers were organized in a triangular shape pointing downwards exhibited the most noticeable impact on the reduction of momentum, inundation area, and run-out distance. Additionally, it is worth noting that if these piers were positioned in the lower section of the hill slope, their efficacy in halting the flow would be significantly enhanced.
Conclusion: The utilization of vertical piers along the course of the debris flow can yield a substantial decrease in the momentum, inundation area, and run-out distance associated with the debris flow phenomenon. The influence exerted by the collective presence of piers on the flow is contingent upon the configuration of the piers, their dimensions, as well as the spacing between them. By employing numerical models the optimal scenario can be determined and implemented.
Keywords:

References
1. Armanini A, Michiue M, editors (1997). Recent developments on debris flows. Heidelberg: Springer. [Link] [DOI:10.1007/BFb0117757]
2. Bezak N, Sodnik J, Mikoš M (2019). Impact of a random sequence of debris flows on torrential fan formation. Geosciences. 9(2):64. [Link] [DOI:10.3390/geosciences9020064]
3. Cui P, Zeng C, Lei Y (2015). Experimental analysis on the impact force of viscous debris flow. Earth Surface Processes and Landforms. 40(12):1644-1655. [Link] [DOI:10.1002/esp.3744]
4. De Finis E, Gattinoni P, Marchi L, Scesi L (2018). Anomalous alpine fans: From the genesis to the present hazard. Landslides. 15(4):683-694. [Link] [DOI:10.1007/s10346-017-0894-8]
5. Di Perna A, Cuomo S, Martinelli M (2022). Empirical formulation for debris flow impact and energy release. Geoenvironmental Disasters. 9(8). [Link] [DOI:10.1186/s40677-022-00210-9]
6. Etemad Online (2022). A Huge landslide in Chalous road disconnected running water [Internet]. Tehran: Etemad Online [Cited 2023, 26 Nov]. Available from: https://www.etemadonline.com/%d8%a8%d8%ae%d8%b4-%d8%a7%d8%ac%d8%aa%d9%85%d8%a7%d8%b9%db%8c-23/618513-%d9%84%d8%ba%d8%b2%d8%b4-%d8%b2%d9%85%db%8c%d9%86-%d8%b3%db%8c%d9%84%d8%a7%d8%a8-%d8%ac%d8%a7%d8%af%d9%87-%da%86%d8%a7%d9%84%d9%88%d8%b3 [Link]
7. Fan JH, Galoie M, Motamedi A (2020). Mitigation of the amplitude and celerity of dam break shock wave using combination of groyne and vertical pier. Journal of Mountain Science. 17(6):1452-1461. [Link] [DOI:10.1007/s11629-019-5897-6]
8. Fan J, Motamedi A, Galoie M (2021). Impact of downstream lakes on dam break wave attenuation. Natural Hazards. 106(1):595-612. [Link] [DOI:10.1007/s11069-020-04479-7]
9. Fan J, Galoie M, Motamedi A, Huang J (2021). Assessment of land cover resolution impact on flood modeling uncertainty. Hydrology Research. 52(1):78-90. [Link] [DOI:10.2166/nh.2020.043]
10. Fan J, Motamedi A, Galoie M (2021). Impact of C factor of USLE technique on the accuracy of soil erosion modeling in an elevated mountainous area (case study: The Tibetan plateau). Environment, Development and Sustainability. 23(8):12615-12630. [Link] [DOI:10.1007/s10668-020-01133-x]
11. Farsnews (2023). Some parts of Chalous road is destroyed [Internet]. Tehran: Fars Media Corporation [Cited 2023, 26 Nov]. Available from: https://www.farsnews.ir/alborz/news/14020319000322/%D8%A8%D8%AE%D8%B4%E2%80%8C%D9%87%D8%A7%DB%8C%DB%8C-%D8%A7%D8%B2-%D8%AC%D8%A7%D8%AF%D9%87-%DA%86%D8%A7%D9%84%D9%88%D8%B3-%D8%A2%D8%B3%DB%8C%D8%A8-%D8%AC%D8%AF%DB%8C-%D8%AF%DB%8C%D8%AF%D9%87-%D8%A7%D8%B3%D8%AA [Link]
12. Frank F, McArdell BW, Oggier N, Baer P, Christen M, Vieli A (2017). Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field-data-based entrainment model. Natural Hazards and Earth System Sciences. 17(5):801-815. [Link] [DOI:10.5194/nhess-17-801-2017]
13. Galoie M, Motamedi A (2021). Optimization of export coefficient model based on precipitation and terrain impact factors. Geographical Researches. 36(4):337-346. [Persian] [Link]
14. Gong XL, Chen KT, Chen XQ, You Y, Chen JG, Zhao WY, Lang J (2020). Characteristics of a debris flow disaster and its mitigation countermeasures in Zechawa Gully, Jiuzhaigou Valley, China. Water. 12(5):1256. [Link] [DOI:10.3390/w12051256]
15. Hussin HY, Quan Luna B, Van Westen CJ, Christen M, Malet JP, Van Asch ThWJ (2012). Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Natural Hazards and Earth System Sciences. 12(10):3075-3090. [Link] [DOI:10.5194/nhess-12-3075-2012]
16. Jakob M, Hungr O (2005). Debris-flow hazards and related phenomena. Heidelberg: Springer. [Link]
17. Ji F, Dai Z, Li R (2020). A multivariate statistical method for susceptibility analysis of debris flow in southwestern China. Natural Hazards and Earth System Sciences. 20(5):1321-1334. [Link] [DOI:10.5194/nhess-20-1321-2020]
18. King HM (2018). What is a debris flow?. Geoscience News and Information. [Link]
19. Krušić J, Abolmasov B, Samardžić-Petrović M (2019). Influence of DEM resolution on numerical modeling of debris flows in RAMMS-Selanac case study. Proceedings of the 4th Regional Symposium on Landslides in the Adriatic-Balkan Region. [Link] [DOI:10.35123/ReSyLAB_2019_27]
20. RAMMS (2022). RAMMS debris flow user's manual 1.8.0". Davos: WSL Institute for Snow and Avalanche Research SLF. P. 120. [Link]
21. Takahashi T (2007). Debris flow: Mechanics, prediction and countermeasures. 1st ed. London: Taylor & Francis. [Link] [DOI:10.1201/9780203946282]
22. Takahashi T, Das DK (2014). Debris flow: Mechanics, prediction and countermeasures. 2nd Edition. London: CRC press. [Link]
23. Termini D, Fichera A (2020). Experimental analysis of velocity distribution in a coarse-grained debris flow: A modified Bagnold's equation. Water. 12(5):1415. [Link] [DOI:10.3390/w12051415]
24. Wang GL (2013). Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China. Natural Hazards. 69:1835-1847. [Link] [DOI:10.1007/s11069-013-0772-1]
25. Xiong M, Meng X, Wang S, Guo P, Li Y, Chen G, et al (2016). Effectiveness of debris flow mitigation strategies in mountainous regions. Progress in Physical Geography: Earth and Environment. 40(6):768-793. [Link] [DOI:10.1177/0309133316655304]
26. Zhao H, Yao L, You Y, Wang B, Zhang C (2018). Experimental study of the debris flow slurry impact and distribution. Shock and Vibration. 2018(4):1-15. [Link] [DOI:10.1155/2018/5460362]
27. Zhou W, Fang J, Tang C, Yang G (2019). Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone. Journal of Hydrology. 577:123932. [Link] [DOI:10.1016/j.jhydrol.2019.123932]
28. Zimmermann F, McArdell BW, Rickli C, Scheidl C (2020). 2D runout modeling of hillslope debris flows, based on well-documented events in Switzerland. Geosciences. 10(2):70. [Link] [DOI:10.3390/geosciences10020070]