[Home ] [Archive]   [ فارسی ]  
:: Current Issue :: Search :: Submit an Article ::
:: Volume 37, Issue 3 (2022) ::
GeoRes 2022, 37(3): 381-389 Back to browse issues page
Prediction of Land Use/Cover Changes in the Gorganrood Watershed Using Metrics and Land Change Processes
M. Yaghoobi Bayekolaee1, A. Vafaeenejad *2, H. Moradi Darabkalayi3, H. Hashemi4
1- Department of Water Resources Management Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
2- Department of Geotechnical and Transportation Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran , a_vafaei@sbu.ac.ir
3- Department of Watershed Management and Engineering, College of Natural Resources, Tarbiat Modares University, Tehran, Iran
4- Department of Water Resources Engineering and Center for Advanced Middle Eastern Studies, Lund University, Lund, Sweden
Abstract:   (376 Views)
Aims: The present study aimed to investigate and predict the changes in metrics and Landscape change processes in the Gorganrood watershed in Golestan province.
Methodology: First, land cover maps were prepared in 1990, 2000, 2010, and 2020. Then predict land cover changes for future conditions, under two scenarios (1) continuation of the current trend of change for 2040 and (2) land cover changes for 2040 based on the ecological potential of the land, using land change modeling. Metrics and processes of land change in the studied years and scenarios were extracted using Fragstats software and their changes were analyzed during the study period (1990 to 2020). According to the results obtained during the study period, deforestation (279.53km2), reduction of rangeland lands (542.598km2), agricultural development (413 km2), and development of residential areas (133.81km2) have occurred in the Gorganrood watershed.
Findings: According to the predicted land cover for 2040 under two management scenarios, the area of ​​forest, agriculture, and rangeland in the first scenario (based on the current trend of change) with a change of -58.37, 35.8, 8.28 km2 to 1364.98, 2396.09 and 3481.18km2 will be reached. Meanwhile, in the second scenario (based on ecological potential), the area of ​​forest, agriculture, and rangeland changed by 4.27, -100.86, and 96.58 km2 to 1427.54, 2258.55 and 3567.49km2 will receive.
Conclusion: Increasing and decreasing the number of patches in human and natural uses, respectively, indicate the destructive trend of the landscape during the research period. Forest degradation, rangeland segregation and creation processes in agriculture and residential areas have occurred during the 30-year research period in the Gorganrood watershed.
 
Article number: 8
Keywords: Prediction of Land Cover Changes , LCM Model , Landscape Metrics , Ecological Potential , Gorganrood Watershed
Full-Text [PDF 1545 kb]   (207 Downloads)    
Article Type: Original Research | Subject: natural geography
Received: 2022/04/21 | Accepted: 2022/06/17 | Published: 2022/07/1
References
1. Ahmadi Nadoushan M, Soffianian A, Alebrahim A (2012). Predicting urban expansion in Arak metropolitan area using two land change models. World Applied Sciences Journal. 18(8):1124-1132. [Persian] [Link]
2. Apan AA, Raine SR, Paterson MS (2002). Mapping and analysis of changes in the riparian landscape structure of the lockyer valley catchment, Queensland, Australia. Landscape and Urban Planning. 59(1):43-57. [Link] [DOI:10.1016/S0169-2046(01)00246-8]
3. Bihamta Toosi N, Safianian A, Fakheran S (2014). Analysis of land cover changes in the central part of Isfahan (Iran) using landscape metrics. Iranian Journal of Applied Ecology. 6:77-88. [Persian] [Link]
4. Bogaert J, Ceulemans R, Salvador-Van Eysenrode D (2004). Decision tree algorithm for detection of spatial processes in landscape transformation. Environmental Management. 33(1):62-73. [Link] [DOI:10.1007/s00267-003-0027-0]
5. Boongaling CGK, Faustino-Eslava DV, Lansigan FP (2018). Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land use policy. 72:116-128. [Link] [DOI:10.1016/j.landusepol.2017.12.042]
6. Braimoh AK (2006). Random and systematic land-cover transitions in northern Ghana. Agriculture, Ecosystems & Environment. 113(1-4):254-263. [Link] [DOI:10.1016/j.agee.2005.10.019]
7. Buyantuyev A, Wu J, Grie C (2010). Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape and Urban Planning. 94(3-4):206-217. [Link] [DOI:10.1016/j.landurbplan.2009.10.005]
8. Feizizadeh B, Didehban K, Gholamnia K (2016). Extraction of land surface temperature (lst) based on landsat satellite images and split window algorithm study area: Mahabad catchment. Geographical Data. 25(98):171-181. [Persian] [Link]
9. Fiener P, Auerswald K, Van Oost K (2011). Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments-A review. Earth-Science Reviews. 106(1-2):92-104. [Link] [DOI:10.1016/j.earscirev.2011.01.004]
10. Japelaghi M, Gholamalifard M, Shayesteh K (2019). Spatio-temporal analysis and prediction of landscape patterns and change processes in the central Zagros region, Iran. Remote Sensing Applications: Society and Environment. 15:100244. [Link] [DOI:10.1016/j.rsase.2019.100244]
11. Japolghy M, Gholamalifard M, Shayesteh K (2017). Monitoring and analysis of landscape pattern of Lorestan province and its change process in GIS environment. Journal of Natural Environment. 70(1):15-36. [Persian] [Link]
12. Joorabian Shooshtari S, Shayesteh K, Gholamalifard M, Azari M, López-Moreno J (2017). The role of landscape metrics and spatial processes in performance evaluation of GEOMOD (Case study: Neka river basin). Geography and Environmental Sustainability. 7(3):63-80. [Link]
13. Joorabian Shooshtari Sh, Shayesteh K, Gholamalifard M, Azari M, López-Moreno JI (2018). Land cover change modelling in hyrcanian forests, Northern Iran: A landscape pattern and transformation analysis perspective. Cuadernos de Investigación Geográfica. 44(2):743-761. [Link] [DOI:10.18172/cig.3279]
14. Karami P, Mirsanjari M (2018). Analysis of landscape degradation in the Hawizeh wetland by using remote sensing. Journal of Wetland Ecobiology. 10(35):39-54. [Persian] [Link]
15. Kavian A, Golshan M, Abdollahi Z (2017). Flow discharge simulation based on land use change predictions. Environmental Earth Sciences. 76(588). [Link] [DOI:10.1007/s12665-017-6906-0]
16. Kiyani V, Feghhi J (2015). Investigation of cover/land use structure of sefidrod watershed by landscape ecology metrics. Journal of Environmental Science and Technology. 17(2(65):131-141. [Persian] [Link]
17. Matsushita B, Xu M, Fukushima T (2006). Characterizing the changes in landscape structure in the lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landscape and urban planning. 78(3):241-250. [Link] [DOI:10.1016/j.landurbplan.2005.08.003]
18. McGarigal K, Marks BJ (2012). Fragstats: Spatial pattern analysis program for quantifying landscape structure. Open Journal of Ecology. 2(3). [Link]
19. Megahed Y, Cabral P, Silva J, Caetano M (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in greater cairo region-Egypt. ISPRS International Journal of Geo-Information. 4(3):1750-1769. [Link] [DOI:10.3390/ijgi4031750]
20. Mishra VN, Rai PK, Mohan K (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar). Environmental Science. 64(1):111-127. [Link] [DOI:10.2298/IJGI1401111M]
21. Rajaei F, Esmaili Sari A, Salman Mahiny A, Delavar M, Gholipour M, Massah Bavani A (2017). Prediction the most suitable of agricultural zones in the tajan watershed using multi criteria evaluation (mce) approach. Town and Country Planning. 9(1):111-127. [Persian] [Link]
22. Reddy CS, Singh S, Dadhwal VK, Jha CS, Rao NR, Diwakar PG (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science. 126(8):137-152. [Link] [DOI:10.1007/s12040-016-0786-7]
23. Rodríguez N, Armenteras D, Retana J (2012). Land use and land cover change in the Colombian andes: Dynamics and future scenarios. Journal of Land Use Science. 8:1-21. [Link] [DOI:10.1080/1747423X.2011.650228]
24. Romano G, Abdelwahab OM, Gentile F (2018). Modeling land use changes and their impact on sediment load in a mediterranean watershed. Catena. 163:342-353. [Link] [DOI:10.1016/j.catena.2017.12.039]
25. Saffari A, Noori A, Karami J (2018). Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood. Journal of Spatial Analusis Environmental Hazards. 5(1):83-96. [Persian] [Link] [DOI:10.29252/jsaeh.5.1.83]
26. Shooshtari SJ, Gholamalifard M (2015). Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka watershed, Iran. Remote Sensing Applications: Society and Environment. 1:1-19. [Link] [DOI:10.1016/j.rsase.2015.05.001]
27. Su S, Ma X, Xiao R (2014). Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecological Indicators. 40:10-18. [Link] [DOI:10.1016/j.ecolind.2013.12.013]
28. Sun B, Zhou Q (2016). Expressing the spatio-temporal pattern of farmland change in arid lands using landscape metrics. Journal of Arid Environments. 124:118-127. [Link] [DOI:10.1016/j.jaridenv.2015.08.007]
29. Talebi Amiri S, Azari Dehkordi F, Sadeghi S, Soufbaf S (2009). Study on landscape degradation in Neka watershed using landscape metrics. Environmental Sciences. 6(3):133-144. [Persian] [Link]
30. Tlapáková L, Stejskalová D, Karásek P, Podhrázská J (2013). Landscape metrics as a tool for evaluation landscape structure-case study Hustopeče. European Countryside. 5(1):52-70. [Link] [DOI:10.2478/euco-2013-0004]
31. Uuemaa E, Roosaare J, Oja T, Mander Ü (2011). Analysing the spatial structure of the Estonian landscapes: Which landscape metrics are the most suitable for comparing different landscapes. Estonian Journal of Ecology. 60(1):70-80. [Link] [DOI:10.3176/eco.2011.1.06]
32. Yousefi S, Tazeh M, Mirzaee S, Moradi H, Tavangar S (2014). Comparison of different classification algorithms in satellite imagery to produce land use maps (Case study: Noor city). Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS Techniques in Natural Resource Science). 5(3):67-76. [Persian] [Link]
33. Zabihi M, Moradi H, Gholamalifard M, Khaledi Darvishan A (2019). Effects of land use/land cover change scenarios on landscape metrics on the Talar watershed. Watershed Management Researches (Pajouhesh-Va-Sazandegi). 32(1(122)):84-99. [Persian] [Link]
34. Zabihi M, Moradi H, Gholamalifard M, Khaledi Darvishan A, Fürst C (2020). Landscape anagement through change processes monitoring in Iran. Sustainability. 12(5):1753. [Link] [DOI:10.3390/su12051753]
35. Zebardast L, Yavare A, Salehi E, Makhdoum M (2012). Using landscape ecological metrics to investigate impacts of road on structural changes in Golestan national park during 1987 to 2010. Environmental Researches. 2(4):11-20. [Link]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yaghoobi Bayekolaee M, Vafaeenejad A, Moradi Darabkalayi H, Hashemi H. Prediction of Land Use/Cover Changes in the Gorganrood Watershed Using Metrics and Land Change Processes. GeoRes 2022; 37 (3) :381-389
URL: http://georesearch.ir/article-1-1329-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 37, Issue 3 (2022) Back to browse issues page
تحقیقات جغرافیایی Geographical Researches
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 4540