Persian
دوره 34، شماره 1 - ( 1397 )                   جلد 34 شماره 1 صفحات 95-87 | برگشت به فهرست نسخه ها
نوع مقاله:
پژوهشی اصیل |
موضوع مقاله:

Print XML English Abstract PDF HTML


History

How to cite this article
Maleki A, Fathnia A A, Akbari M. Geomorphic and land cover assessment of dust sources affecting the west and North-West Iran. GeoRes 2019; 34 (1) :87-95
URL: http://georesearch.ir/article-1-268-fa.html
ملکی امجد، فتح نیا امان الله، اکبری محسن. ارزیابی ژئومورفیکی و پوشش اراضی چشمه‌های گردوغبار مؤثر بر غرب وشمال غرب ایران. فصل‌نامه تحقیقات جغرافیایی. 1397; 34 (1) :87-95

URL: http://georesearch.ir/article-1-268-fa.html


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- گروه جغرافیا، دانشگاه رازی، کرمانشاه، ایران ، amjad_maleki@yahoo.com
2- گروه جغرافیا، دانشگاه رازی، کرمانشاه، ایران
* نشانی نویسنده مسئول: amjad_maleki@yahoo.com
چکیده   (8356 مشاهده)
اهداف و زمینه‌ها: از مهم‌ترین چالش‌های زیست‌محیطی به‌وجود آمده در غرب کشور در سال‌های اخیر پدیده گردوغبار است که امروزه به یکی از مشکلات اساسی در مناطق خشک و نیمه‌خشک تبدیل شده است. این پدیده به عنوان یک پدیده اقلیمی در تمام شرایط آب‌وهوایی رخ می‌دهد که اثرات نامطلوب اجتماعی، اقتصادی، زیست محیطی و تجاری را سبب می‌گردد. در این تحقیق برای بررسی تأثیر ویژگی‌های سطحی زمین بر ایجاد چشمه‌های گردوغبار مؤثر بر غرب کشور، از کانون‌های شناسایی شده توسط جلالی و داوودی(2008) استفاده گردید. منطقه مورد‌ مطالعه با مساحتی حدود 1200000 کیلومتر مربع بخش شرقی خاورمیانه شامل کشور عراق و قسمتی از کشورهای ایران، ترکیه، سوریه، اردن، عربستان سعودی و کویت را در بر می‌گیرد. هدف از این پژوهش، بررسی ویژگی‌های ژئومورفیکی و رسوبات سطحی، پوشش اراضی و پتانسیل فرسایش بادی چشمه‌های گردوغبار در منطقه مورد ‌مطالعه است.
روش‌شناسی: بدین منظور، با توجه به طبقه بندی بولارد (2011)، ابتدا لایه‌های طبقات ژئومورفیکی، خاک و پوشش اراضی تهیه و براساس اهمیت نسبی طبقات در انتشار گردوغبار، به سه گروه کم، متوسط و زیاد طبقه‌بندی گردید. در ادامه با استفاده از داده‌های 40 ایستگاه هواشناسی شاخص پتانسیل فرسایش بادی (EW) محاسبه و پهنه‌بندی با روش کریجینگ، انجام شد.
نتیجه‌گیری: نتایج نشان داد که ویژگی‌های ژئومورفیکی بیشترین نقش را در بین عوامل کنترل کننده انتشار گردوغبار را دارند. تپه‌های ماسه‌ای در بین طبقات ژئومورفیکی با نسبت انتشار 35/3 واحد بیشترین تأثیر را در ایجاد چشمه‌های گردوغبار دارد. بین طبقات مختلف پوشش اراضی و نوع خاک و کانون های گردوغبار انطباق زیادی وجود ندارد، اما بین پتانسیل فرسایش بادی و چشمه‌های گردوغبار انطباق وجود دارد و بیشترین کانون‌های گردوغبار در مناطق با پتانسیل فرسایش بادی زیاد ایجاد شده است.
واژه‌های کلیدی:

فهرست منابع
1. Abkar AA, Nooshin MA, GoliJirandeh A, Abkar A (2011). Identification of harvesting centers and the effect of vegetation changes on the occurrence of dust storms using remote sensing technology and GIS, Geomatics National Conference, Tehran: National mapping agency. [Persian]
2. Afifi ME (2017). Monitoring of the dust using Multi-Spectral Images of the Satellite in the Southwest of Iran. Geography Quarterly. 55:183-194. [Persian]
3. Arami A, Ownagh M, Mohammadianbehbahani A, Akbari M, Zarasvandi A (2018). Analysis of dust hazard studies in southwest of Iran during the 22 year period 1996-2017. Spatial Analysis Environmental Hazarts. 5(1):39-66. [Persian] [DOI:10.29252/jsaeh.5.1.39]
4. Baddock MC, Gill TE, Bullard JE, Dominguez Acosta M, Rivera NI )2011(. Geomorphology of the Chihuahuan Desert based on potential dust emissions. Maps. 2011:249-259. [DOI:10.4113/jom.2011.1178]
5. Bullard J, Baddock M, McTainsh G, Leys J )2008(. Sub-basin scale dust source geomorphology detected using MODIS, Geophysical Research Letters. 35(15):1-6. [DOI:10.1029/2008GL033928]
6. Bullard JE, Harrison SP, Baddock MC, Drake N, et al )2011(. Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models. JGR Earth Surface. 116(F4):1-20. [DOI:10.1029/2011JF002061]
7. Fallahzuzoli M, Vafayinejad A, Khairkhahzarkesh M, Ahmadinejad F, et al (2014). Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. RS and GIS for Natural Resources. 5(4):61-78. [Persian]
8. Galloza MS, Webb NP, Bleiweiss MP, Winters C, Herrick JE, Ayers E (2018). Exploring dust emission responses to land cover change using an ecological land classification. Aeolian Research. 32:141-151. [DOI:10.1016/j.aeolia.2018.03.001]
9. Gill TE, Cahill TA )1992(. Playa-Generated Dust Storms from Owens Lake, Climate indicators. University of California Press. pp: 63-73.
10. Gill TE (1996). Eolian sediments generated by anthropogenic disturbanceof playas: Human impacts on the geomorphic system and geomorphicimpacts on the human system. Geomorphology. 17(1):207-228. [DOI:10.1016/0169-555X(95)00104-D]
11. Hahnenberger M, Nicoll K (2014). Geomorphic and landcover identification of dust sources in the eastern Great Basin of Utah, USA. Geomorphology. 204:657-672. [DOI:10.1016/j.geomorph.2013.09.013]
12. Iranmanesh F, Arab Khedri M, Akram M (2005). Surveying Dust Particulate Areas and Their Distribution Characteristics in Sistan Area Storm Using Satellite Image Processing. Pajouhesh va Sazandegi. 18(2-67):25-33. [Persian]
13. Karimi K, Taheri Shahraeini H, Habibi Nokhandan M, HafeziMoghadas N (2011). Identifying the origin of dust storm production in the Middle East using remote sensing. Climate Research. 2(1):57-72. [Persian]
14. Lee JA, Gill T, Mulligan KR, Acosta MD, Perez AE (2009). Land use/land cove r and point sources of the 15 December 2003 dust storm in southwestern North America. Geomorphology. 105(1):18-27. [DOI:10.1016/j.geomorph.2007.12.016]
15. Lee JA, Baddock MC, Mbuh JM, Gill Th (2012). Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Research. 3(4):459-466. [DOI:10.1016/j.aeolia.2011.08.001]
16. Mahowald NM, Ballantine JA, Feddema J, Ramankutty N (2007). Global trends in visibility: implications for dust sources. Atmosphere Chemistry and Physics. 7(12):3309-3339. [DOI:10.5194/acp-7-3309-2007]
17. Painter TH, Deems JS, Belnap J, Hamlet AF, Landry CC, Udall B (2010). Response of Colorado River run off to dust radiative forcing in snow. Pacific Institute for Studies in Development, Environment, and Security Journal. 107(40):17125-17230. [DOI:10.1073/pnas.0913139107] [PMID] [PMCID]
18. Parajuli SP, Zender CS (2017). Connecting geomorphology to dust emission through high-resolution mapping of global land cover and sediment supply. Aeolian Research. 27:47-65. [DOI:10.1016/j.aeolia.2017.06.002]
19. Shamsipour AA, Safarrad T (2010). Satellite - Overview Analysis of the Dust. Natural Geography Research, 79:111-126. [Persian]
20. Wilkerson WD (1991). Dust and Sand Forecasting in Iraq and Adjoining Countries.Technical Report, Air Weather Service, Scott AFB(AWS/XTX), IL 62225-5008, pp: 1-65.
21. Wang X, Zhou Z, Dong Z (2006). Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based an Abstracton dust storm frequency from 1960 to 2003. Geomorphology. 81(3-4):292-308. [DOI:10.1016/j.geomorph.2006.04.015]
22. Wang X, Xia D, Wang T, Xue X, Jinchang L (2008). Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials. Geomorphology. 97(3-4):583-600. [DOI:10.1016/j.geomorph.2007.09.006]
23. Zou KX, Zhai PM (2004). Relationship between vegetation coverage and spring dust storms over northern china. Geophysical Research. 109(D3):1-9. [DOI:10.1029/2003JD003913]
24. Zaitchik BF, Evans JP, Geerken RA, Smith RB (2007). Climate and vegetation in the Middle East: Interannual variability and drought feedbacks. Climate. 20:3924- 3941. [DOI:10.1175/JCLI4223.1]