Volume 33, Issue 3 (2018)                   GeoRes 2018, 33(3): 106-123 | Back to browse issues page
Article Type:
Original Research |
Subject:

Print XML Persian Abstract PDF HTML


History

Rights and permissions
1- Department of Geography, Faculty of Planning and Envi-ronmental Sciences, Tabriz University, Tabriz, Iran
2- Department of Soil Conserva-tion & Watershed Manage-ment Research, Tehran, Iran
Abstract   (3673 Views)
Introduction and Background: Precipitation is the most important parameter affecting various aspects of social, economic and natural resources. A study of future changes in rainfall is possible through the prediction of climate models.
Aims: In the present study, future changes in the rainfall of the southern coasts were investigated for proper planning in the southern coast of the Caspian Sea.
Methodology: The future precipitation of selected stations in the southern shores of the Caspian Sea using the LARS-WG model and observations of precipitation data during the base period and using climatic fluctuations derived from the HadCM3 general circulation model under the scenarios A2, B1 and A1B during the period was modeled in the period between 2011-2039.
Conclusion: Results showed that simulated rainfall has a high correlation with observational precipitation in the base period. Based on the MBE and MAE criteria, the error rates obtained for simulated precipitation during the base period are high in the fall season. According to the results, the model of rainfall changes in southern shores in the following period was drawn using scenarios A2, B1 and A1B, according to which the rainfall will increase in all stations of the region. The percentage of precipitation increase in stations Anzali, Astara, Babolsar, Gorgan, Noshahr, Ramsar and Rasht based on scenario A2 will 0.3, 7.9, 2. 2, 1.4, 8.7, 0.8 , 7.6%, and based on the A1B scenario, 9.3%, 12.12%, 12.4%, 4.7%, 13.9%, respectively and based on the B1 scenario will be 8.7, 9.7, 6, 5/11, 7/3, 3/5, 6/13 percent.
Keywords:

References
1. Ahmadi, M., Lashkari, H., Keykhosravi, G., & Azadi, M. (2016). Comparing the performance of LARS_WG and RegCM4 models in simulating and post-processing of annual temperature and rainfall data in Great Khorasan. Geographic Information Journal, 25(98), 157-170. [DOI:10.22131/SEPEHR.2016.22144]. (Persian)
2. Awal, R., Bayabil, H. K., & Fares, A. (2016). Analysis of potential future climate and climate Extremes in the Brazos Headwaters basin, Texas. Water, 8(12), 603. [DOI:10.3390/w8120603]
3. Babaian, I., Najafineik, Z., Abbasi, F., Habeibei, M., Adab, H., & Malbisei, S. (2009). Climate Change Assessment over Iran During 2010-2039 by Using Statistical Downscaling of ECHO- G Model. Geography and Development Journal, 7(16), 135-152. [DOI:10.22111/GDIJ.2009.1179]. (Persian)
4. Bahri, M., & Zahedi, E. (2016). Investigation of climate change impacts on streamflow regime of a river Arazkooseh river basin. Researches in Geographical Sciences, 16(42), 109-132. (Persian)
5. Barzegari, F., & Maleki, H. (2016). Prediction and comparison of climate changes in mountainous and palin regions during 2010-2030 (case study: Yazd- Ardakan watershed). Journal of the Earth and Space Physics, 42(1), 171-182. [DOI:10.22059/JESPHYS.2016.55319]. (Persian)
6. Bian, H., Lü, H., Sadeghi, A. M., Zhu, Y., Yu, Z., Ouyang, F., . . . Chen, R. (2017). Assessment on the effect of climate change on streamflow in the source region of the Yangtze River, China. Water, 9(1), 70. [DOI:10.3390/w9010070]
7. Butterworth, M. K., Morin, C. W., & Comrie, A. C. (2016). An analysis of the potential impact of climate change on dengue transmission in the southeastern United States. Environmental health perspectives, 125(4), 579-585. [DOI:10.1289/EHP218]
8. Dalghandi, M. (2016). Envestigation of climate change effect on potential evapotransportration. Irrigation and Water Engineering, 6(23), 156-167. (Persian)
9. Delavar, M., Babaei, O., & Fattahi, E. (2014). Evaluation of climate change impacts on Urmia lake water level fluctuations. Climatology Research Journal, 1393(19), 53-65. (Persian)
10. Esquivel-Arriaga, G., Sánchez-Cohen, I., López-Santos, A., Velásquez-Valle, M. A., & Bueno-Hurtado, P. (2016). Methodological approach to quantify the effect of changing climate patterns on bean crop yield in the State of Durango. Revista Chapingo Serie Zonas Áridas, 15(1), 17-28. [DOI:10.5154/r.rchsza.2015.08.011]
11. Eyni Nargese, H., Deyhimfard, R., Haghighat, S., & Nouri, O. (2015). Predicting the impacts of climate change on irrigated wheat yield in Fars province using APSIM model. Production of Crops Journal, 8(4), 203-224. (Persian)
12. Ghermezcheshmeh, B. (2013). Investigating the effect of uncertainty of downscaling of GCM models on temprature and precipitation. (PhD Thesis), Tabriz University. (Persian)
13. Gilanipour, J., & Gholizadeh, B. (2016). Prediction of rice water requirement using FAO-CROPWAT model in North Iran under future climate change. Preprints, 1-9. [DOI:10.20944/preprints201610.0134.v1]
14. Hejazizadeh, Z., Hoseini, S. M., & Karbalyi Dorri, A. Z. (2015). Simulation of climate variables in semnan province with the general circulation model scenarios. Geography and Environment Journal, 4(15), 1-24. (Persian) [DOI:10.22067/geo.v4i3.44214]
15. IPCC. (2014). Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Cambridge University Press. Retrieved from https://pure.mpg.de/rest/items/item_2147184/component/file_2147185/content
16. Jahanbaksh Asl, S., Khorshiddoust, A. M., Dinpashoh, Y., & Sarafrouzeh, F. (2013). Frequency analysis of climate extreme events in Zanjan, Iran. Stochastic environmental research and risk assessment, 27(7), 1637-1650. [DOI:10.1007/s00477-013-0701-6]
17. Jallili, K., Moradi, H., & Bozorg Haddad, O. (2016). Assessment of climate change impacts on water resources in Islam Abad aquifer and land allocation optimization. Desert Ecosystem Engineering Journal, 5(11), 117-131. (Persian)
18. Kazemirad, L., & Mohammadi, H. (2015). Assessing the appropriate model for forecasting climate change in gilan provience. Geography and Environmental Hazard Journal, 4(16), 55-74. [DOI:10.22067/geo.v4i4.38892]. (Persian)
19. Khorshiddoust, A. M., Zanganeh, S., & Zarei, Y. (2014). Analysis and comparison trend of changes in temprature and precipitation index in kermanshah. Paper presented at the Thirty -Second Ghathering and the first international congress of earth sciences, Tehran. (Persian)
20. Mekonnen, D. F., & Disse, M. (2016). Analyzing the future climate change of Upper Blue Nile River Basin (UBNRB) using statistical downscaling techniques. Hydrology and Earth System Sciences Discuss, 22, 2391-2408. [DOI:10.5194/hess-22-2391-2018]
21. Osman, Y., Al-Ansari, N., Adbellatif, M., Al-Jawad, S., & Knutsson, S. (2014). Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering, 6(13), 948-959. [DOI:10.4236/eng.2014.613086]
22. Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1), 27-41. [DOI:10.1016/0304-3800(91)90053-4] [DOI:10.1016/0304-3800(91)90053-4]
23. Rashidian, L., & Ebrahimi, A. (2016). Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 10(8), 836-841.
24. Rezaei Banafsheh, M., Jalali Ansorudi, T., & Zarghami, M. (2015). Investigate of climate change impacts on groundwater level in Tasuj basin by statistical downscaling method. Water Resourses Research Journal, 11(2), 97-105. (Persian)
25. Salami, H., Naseri, H. R., & Massah Bavani, A. R. (2016). The effect of uncertainty of general circulation models on forcasting of grandwater level changes. Earth Science Research Journal, 7(2), 56-69. (Persian)
26. Samadi, S., Ehteramian, K., & Sarraf, B. S. (2011). SDSM ability in simulate predictors for climate detecting over Khorasan province. Procedia - Social and Behavioral Sciences, 19, 741-749. [DOI:10.1016/j.sbspro.2011.05.193]
27. Semenov, M., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for impact assessments of climate change. Inter-Research Climate Rresearch, 41(1), 1-14. [DOI:10.3354/cr00836]
28. Semenov, M. A. (2008). Simulation of extreme weather events by a stochastic weather generator. Climate Research, 35(3), 203-212. [DOI:10.3354/cr00731]
29. Semenov, M. A., Donatelli, M., Stratonovitch, P., Chatzidaki, E., & Baruth, B. (2010). ELPIS: a dataset of local-scale daily climate scenarios for Europe. Climate Research, 44(1), 3-15. [DOI:10.3354/cr00865]
30. Shahni Danesh, A., Ahadi, M. S., Fahmi, H., Nokhandan, M. H., & Eshraghi, H. (2016). Climate change impact assessment on water resources in Iran: applying dynamic and statistical downscaling methods. Journal of Water and Climate Change, 7(3), 551-577. [DOI:10.2166/wcc.2016.045]
31. Towfiqul Islam, A. R. M., Shen, S., Hu, Z., & Rahman, M. A. (2017). Drought hazard evaluation in boro paddy cultivated areas of western Bangladesh at current and future climate change conditions. Advances in Meteorology, 2017, 1-12. [DOI:10.1155/2017/3514381]
32. Zamani Nuri, A., Farzaneh, M., & Espanayi, K. (2014). Assessment of climatic parameters uncertainty under effect of different downscaling techniques. International Research Journal of Applied and Basic Sciences, 8(9), 1316-1320.