1. Azarakhsh Z, Azadbakht M, Matkan A (2022). Estimation, modeling, and prediction of land subsidence using Sentinel-1 time series in Tehran-Shahriar plain: A machine learning-based investigation. Remote Sensing Applications: Society and Environment. 25:100691. [
Link] [
DOI:10.1016/j.rsase.2021.100691]
2. Blanco-Sánchez P, Mallorquí JJ, Duque S, Monells D (2008). The Coherent Pixels Technique (CPT): An advanced DInSAR technique for nonlinear deformation monitoring. Pure and Applied Geophysics. 165(6):1167-1193. [
Link] [
DOI:10.1007/s00024-008-0352-6]
3. Cigna F, Tapete D (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR. Remote Sensing of Environment. 253:112161. [
Link] [
DOI:10.1016/j.rse.2020.112161]
4. Duque S, Mallorqui JJ, Blanco P, Monells D (2007). Application of the Coherent Pixels Technique (CPT) to urban monitoring. Proceedings of the 2007 Urban Remote Sensing Joint Event. Paris: IEEE. [
Link] [
DOI:10.1109/URS.2007.371880]
5. El Kamali M, Papoutsis I, Loupasakis C, Abuelgasim A, Omari K, Kontoes C (2021). Monitoring of land surface subsidence using persistent scatterer interferometry techniques and ground truth data in arid and semi-arid regions, the case of Remah, UAE. Science of the Total Environment. 776:145946. [
Link] [
DOI:10.1016/j.scitotenv.2021.145946]
6. Ghorbani Z, Khosravi A, Maghsoudi Y, Mojtahedi FF, Javadnia E, Nazari A (2022). Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Scientific Reports. 12(1):13998. [
Link] [
DOI:10.1038/s41598-022-17438-y]
7. Han Y, Liu G, Liu J, Yang J, Xie X, Yan W, et al (2023). Monitoring and analysis of land subsidence in Jiaozuo City (China) based on SBAS-InSAR Technology. Sustainability. 15(15):11737. [
Link] [
DOI:10.3390/su151511737]
8. Hussain MA, Chen Z, Zheng Y, Shoaib M, Ma J, Ahmad I, et al (2022). PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City, Pakistan. Remote Sensing. 14(16):3950. [
Link] [
DOI:10.3390/rs14163950]
9. Lo W, Purnomo SN, Dewanto BG, Sarah D, Sumiyanto (2022). Integration of numerical models and InSAR techniques to assess land subsidence due to excessive groundwater abstraction in the Coastal and Lowland regions of Semarang City. Water. 14(2):201. [
Link] [
DOI:10.3390/w14020201]
10. Maghsoudi Y, Meer F, Hecker C, Perissin D, Saepuloh A (2018). Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. International Journal of Applied Earth Observation and Geoinformation. 64:386-396. [
Link] [
DOI:10.1016/j.jag.2017.04.001]
11. Mahmoodinasab F, Mohseni N (2021). A spatiotemporal analysis of the relationship between groundwater level and ground surface displacement using Sentinel-1 SAR data. Arabian Journal of Geosciences. 14(12):1106. [
Link] [
DOI:10.1007/s12517-021-07497-2]
12. Navarro-Hernández MI, Tomás R, Lopez-Sanchez JM, Cárdenas-Tristán A, Mallorquí JJ (2020). Spatial analysis of land subsidence in the San Luis Potosi Valley induced by aquifer overexploitation using the Coherent Pixels Technique (CPT) and Sentinel-1 InSAR observation. Remote Sensing. 12(22):3822. [
Link] [
DOI:10.3390/rs12223822]
13. Nazmfar H, Shirzad Khrjan M (2022). Surface subsidence monitoring with radar interference technique (study area: Meshgin plain). Journal of Natural Environment Hazards. 11(31):25-48. [Persian] [
Link]
14. Pawluszek-Filipiak K, Borkowski A (2021). Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. European Journal of Remote Sensing. 54(Suppl 1):18-30. [
Link] [
DOI:10.1080/22797254.2020.1759455]
15. Ramirez RA, Kwon TH (2022). Sentinel-1 persistent scatterer interferometric synthetic aperture radar (PS-InSAR) for long-term remote monitoring of ground subsidence: A case study of a port in Busan, South Korea. KSCE Journal of Civil Engineering. 26(10):4317-4329. [
Link] [
DOI:10.1007/s12205-022-1005-5]
16. Ranjbar M, Jafari N (2009). Investigating the effective factors in the subsidence of the Eshtehard plain. Journal of Geography. 6(19):155-166. [Persian] [
Link]
17. Rashidi A, Khatib MM, Mousavi SM, Jamour Y (2017). Estimation of the location of active faults in the south and west of Lut Block. Geosciences. 26(104):211-222. [Persian] [
Link]
18. Salehi R, Ghafoori M, Lashkaripour GR, Dehghani M (2013). Evaluation of land subsidence in southern Mahyar Plain using radar interferometry. Journal of Irrigation and Water Engineering. 3(3):47-57. [Persian] [
Link]
19. Sharifikia M (2012). Determining the amount and range of land subsidence using radar interferometric method in Noug-Bahrman Plain. Journal of Spatial Planning. 16(3):55-77. [Persian] [
Link]
20. Verberne M, Koster K, Lourens A, Gunnink J, Candela T, Fokker A (2023). Disentangling shallow subsidence sources by data assimilation in a reclaimed urbanized coastal plain, South Flevoland polder, the Netherlands. JGR Earth Surface. 128(7):e2022JF007031. [
Link] [
DOI:10.1029/2022JF007031]
21. Xu X, Zhou C, Gong H, Chen B, Wang L (2023). Monitoring and analysis of land subsidence in Cangzhou based on small baseline subsets interferometric point target analysis technology. Land. 12(12):2114. [
Link] [
DOI:10.3390/land12122114]
22. Yuan M, Li M, Liu H, Lv P, Li B, Zheng W (2021). Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions. Remote Sensing. 13(16):3107. [
Link] [
DOI:10.3390/rs13163107]
23. Zhang Z, Hu C, Wu Z, Zhang Z, Yang S, Yang W (2023). Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies. Scientific Reports. 13(1):8031. [
Link] [
DOI:10.1038/s41598-023-35152-1]